
1

CS 638 Web Programming

SQL
Lecture 11

Based on slides by R. Ramakrishnan and J. Gehrke

CS 638 Web Programming – Estan & Kivolowitz

Structured Query Language

Developed by IBM (system R) in the 1970s
Used by all major vendors of relational databases
SQL has been standardized by ISO and ANSI
SQL has many components

Data Description Language is used for creating databases
(creating tables, specifying integrity constraints) – not covered
Data Manipulation Language is used for querying database,
inserting, deleting, modifying rows – subject of today’s lecture
Other components not covered in this class: triggers,
transactions, stored procedures

CS 638 Web Programming – Estan & Kivolowitz

Basic SQL query

relation-list A list of relation names (possibly with a range-
variable after each name).
target-list A list of attributes of relations in relation-list
qualification Comparisons (Attr op const or Attr1 op Attr2, where
op is one of) combined using AND, OR and
NOT.
DISTINCT is an optional keyword indicating that the answer
should not contain duplicates. Default is that duplicates are not
eliminated!

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification

< > = ≤ ≥ ≠, , , , ,

CS 638 Web Programming – Estan & Kivolowitz

Conceptual evaluation strategy
Semantics of an SQL query defined in terms of the
following conceptual evaluation strategy:

Compute the cross-product of relation-list (see example).
Discard resulting tuples if they fail qualifications.
Delete attributes that are not in target-list.
If DISTINCT is specified, eliminate duplicate rows.

This strategy is probably the least efficient way to
compute a query! An optimizer will find more
efficient strategies to compute the same answers.

CS 638 Web Programming – Estan & Kivolowitz

Conceptual evaluation ex.
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

(sid) sname rating age (sid) bid day
22 dustin 7 45.0 22 101 10/10/96
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 22 101 10/10/96
31 lubber 8 55.5 58 103 11/12/96
58 rusty 10 35.0 22 101 10/10/96
58 rusty 10 35.0 58 103 11/12/96

s i d b i d d a y
2 2 1 0 1 1 0 / 1 0 / 9 6
5 8 1 0 3 1 1 / 1 2 / 9 6

s id sn a m e ra tin g a g e
2 2 d u s tin 7 4 5 .0
3 1 lu b b e r 8 5 5 .5
5 8 ru s ty 1 0 3 5 .0

Reserves

Sailors

CS 638 Web Programming – Estan & Kivolowitz

Other query examples
Find all sailors who
have reserved at least
one boat

Why doesn’t this
query find all sailors?

Find all sailors who
have reserved a red or
a green boat

Find all sailors who
have reserved a red
and a green boat

SELECT S.sid
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND (B.color=‘red’ OR B.color=‘green’)

SELECT S.sid
FROM Sailors S, Boats B1, Reserves R1,

Boats B2, Reserves R2
WHERE S.sid=R1.sid AND R1.bid=B1.bid

AND S.sid=R2.sid AND R2.bid=B2.bid
AND (B1.color=‘red’ AND B2.color=‘green’)

2

CS 638 Web Programming – Estan & Kivolowitz

Ordering the results

Allows user to control ordering of tuples in result
Can specify multiple columns to order the results by

Second column used as tie breaker when values in the first
column are equal

By default rows ordered in ascending order, but can request
descending order using DESC

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification
ORDER BY column1 [ASC, DESC] [, column2 [ASC, DESC]] …

CS 638 Web Programming – Estan & Kivolowitz

ORDER BY examples
List the names and ages of all sailors, sorted by name

List the names and ratings of all sailors with a rating larger than 5
ordered by rating and within each rating by the age of the sailors

SELECT S.sname, S.age
FROM Sailors S
ORDER BY S.sname

SELECT S.sname, S.rating
FROM Sailors S
WHERE S.rating > 5
ORDER BY S.rating, S.age

CS 638 Web Programming – Estan & Kivolowitz

Expressions and strings

Find triples (of ages of sailors and two fields defined by
expressions) for sailors whose names begin and end with B and
contain at least three characters.

Uses arithmetic expressions and string pattern matching
AS and = are two ways to name fields in result.
LIKE is used for string matching. `_’ stands for any one character
and `%’ stands for 0 or more arbitrary characters.

SELECT S.age, age1=S.age-5, 2*S.age AS age2
FROM Sailors S
WHERE S.sname LIKE ‘B_%B’

CS 638 Web Programming – Estan & Kivolowitz

Nested queries

Find the names of sailors who have reserved boat 103
There are multiple ways to formulate every query

A very powerful feature of SQL: a WHERE clause can itself
contain a SQL query! (So can FROM and HAVING clauses.)
To find sailors who’ve not reserved #103, use NOT IN.
To understand semantics of nested queries, think of a nested
loops evaluation: For each Sailors tuple, check the qualification
by computing the subquery.

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid

FROM Reserves R
WHERE R.bid=103)

CS 638 Web Programming – Estan & Kivolowitz

Nested queries w/ correlation

EXISTS is another set comparison operator, like IN.
If UNIQUE is used, and * is replaced by R.bid, finds sailors with at
most one reservation for boat #103. (UNIQUE checks for
duplicate tuples; * denotes all attributes. Why do we have to
replace * by R.bid?)
Illustrates why, in general, subquery must be re-computed for
each Sailors tuple.

SELECT S.sname
FROM Sailors S
WHERE EXISTS (SELECT *

FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)

CS 638 Web Programming – Estan & Kivolowitz

More set comparison operators
We’ve already seen IN, EXISTS and UNIQUE. Can
also use NOT IN, NOT EXISTS and NOT UNIQUE.
Also available: op ANY, op ALL, op IN

Find sailors whose rating is greater than that of
some sailor called Horatio:
SELECT *
FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating

FROM Sailors S2
WHERE S2.sname=‘Horatio’)

> < = ≥ ≤ ≠, , , , ,

3

CS 638 Web Programming – Estan & Kivolowitz

Aggregate operators
Count the number of sailors

Find the average age of sailors with
rating 10

How many distinct ratings do sailors
named Bob have?

COUNT (*)
COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)
MIN (A)

single column

SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating=10

SELECT COUNT (*)
FROM Sailors S

SELECT COUNT (DISTINCT S.rating)
FROM Sailors S
WHERE S.sname=‘Bob’

CS 638 Web Programming – Estan & Kivolowitz

Another example
Find name and age of oldest sailor

Incorrect query (We’ll see why in a few slides)

Correct query

SELECT S.sname, MAX (S.age)
FROM Sailors S

SELECT S.sname, S.age
FROM Sailors S
WHERE S.age =

(SELECT MAX (S2.age)
FROM Sailors S2)

CS 638 Web Programming – Estan & Kivolowitz

GROUP BY and HAVING
So far, we’ve applied aggregate operators to all
(qualifying) tuples. Sometimes, we want to apply
them to each of several groups of tuples.
Consider: Find the age of the youngest sailor for
each rating level.

In general, we don’t know how many rating levels exist,
and what the rating values for these levels are!
Suppose we know that rating values go from 1 to 10; we
can write 10 queries that look like this (!):

SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = i

For i = 1, 2, ... , 10:

CS 638 Web Programming – Estan & Kivolowitz

Queries with GROUP BY and
HAVING

The target-list contains (i) attribute names (ii) terms with
aggregate operations (e.g., MIN (S.age)).

The attribute list (i) must be a subset of grouping-list. Intuitively,
each answer tuple corresponds to a group, and these attributes
must have a single value per group. (A group is a set of tuples
that have the same value for all attributes in grouping-list.)

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

CS 638 Web Programming – Estan & Kivolowitz

Conceptual evaluation
The cross-product of relation-list is computed, tuples
that fail qualification are discarded, `unnecessary’
fields are deleted, and the remaining tuples are
partitioned into groups by the value of attributes in
grouping-list.
The group-qualification is then applied to eliminate
some groups. Expressions in group-qualification
must have a single value per group!
One answer tuple is generated per qualifying group.

CS 638 Web Programming – Estan & Kivolowitz

GROUP BY examples
Find the age of the youngest sailor for each rating level

Find the age of the youngest sailor with age at least 18, for each
rating with at least 2 sailors

SELECT S.rating, MIN (S.age)
FROM Sailors S
GROUP BY S.rating

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age > 18
GROUP BY S.rating
HAVING 1 < (SELECT COUNT (*)

FROM Sailors S2
WHERE S.rating=S2.rating)

4

CS 638 Web Programming – Estan & Kivolowitz

One more GOUP BY example
Find the age of the youngest sailor with age at least 18, for each
rating with at least 2 such sailors

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
71 zorba 10 16.0
64 horatio 7 35.0
29 brutus 1 33.0
58 rusty 10 35.0

rating age
1 33.0
7 45.0
7 35.0
8 55.5
10 35.0

rating
7 35.0

CS 638 Web Programming – Estan & Kivolowitz

Aggregate operators cannot
be nested

Find those ratings for which the average age is the minimum
over all ratings

Incorrect

Correct (other formulations possible)

SELECT S.rating
FROM Sailors S
WHERE S.age = (SELECT MIN (AVG (S2.age)) FROM Sailors S2)

SELECT Temp.rating, Temp.avgage
FROM (SELECT S.rating, AVG (S.age) AS avgage

FROM Sailors S
GROUP BY S.rating) AS Temp

WHERE Temp.avgage = (SELECT MIN (Temp.avgage)
FROM Temp)

CS 638 Web Programming – Estan & Kivolowitz

SQL commands for writing to
the database

INSERT INTO adds new
rows to a table

Assignment of values is
based on the order of the
columns

UPDATE changes the
values of some columns for
rows that match condition

DELETE FROM removes
matching rows from table

If no condition specified
all rows deleted

INSERT INTO table_name
VALUES (value1, value2,...)

UPDATE table_name
SET col1=val1, col2=val2,…
WHERE qualification

DELETE FROM table_name
WHERE qualification

CS 638 Web Programming – Estan & Kivolowitz

Database write examples
Add a new sailor

Increase by 1 the age of all sailors younger than 40

Remove all sailors older than 65

INSERT INTO Sailors
VALUES (Ahab,10,55)

UPDATE Sailors
SET age=age+1
WHERE age<40

DELETE FROM Sailors
WHERE age>65

CS 638 Web Programming – Estan & Kivolowitz

Summary
SQL DML provides powerful database querying
capabilities through the SELECT command

Not procedural, based on relational algebra (you specify
what you want, not how to compute it)
Compact and easy to understand (compared to other QL)
Many ways to write the same query

SQL supported by all database vendors
Originated from IBM, now a standard

SQL DML also allows you to insert, update and
delete rows in/from tables in your database

